Развернуть чат
Активные темы
Обзор всех активных тем »
РЕКЛАМА
Наш опрос
Поддерживаете ли вы предложение ряда депутатов Госдумы судить Горбачева за развал СССР?

Да
Нет
Не знаю

Все опросы
Главная страница » Новости » Новости науки и техники » Лауреатами Нобелевской премии по физике стали специалисты по квантовой оптике
Нобелевский комитет присудил Премию по физике 2012 года французу Сержу Харошу (Serge Haroche) и американцу Дэвиду Вайнленду (David Wineland), отметив разработанные учёными «новаторские экспериментальные методики, которые дали возможность измерять отдельные квантовые системы и манипулировать ими».

Карьеры г-д Хароша и Вайнленда, авторитетнейших специалистов по квантовой оптике, развивались параллельно. Они родились в 1944-м и получили степень доктора философии с разницей всего в один год (американский физик — в 1970-м, а французский — в 1971-м). Сейчас Серж Харош работает в парижской Высшей нормальной школе, а Дэвид Вайнленд — в Национальном институте стандартов и технологий и Колорадском университете в Боулдере.

Лауреатами Нобелевской премии по физике стали специалисты по квантовой оптике

Серж Харош (слева) и Дэвид Вайнленд (фотографии CNRS Photothèque / Christophe Lebedinsky, NIST).


Как известно, поведение отдельных частиц вещества и квантов света характеризует квантовая механика. Поскольку изолировать атомы и фотоны и подавить их взаимодействие с окружающей средой сложно, в опытах традиционно наблюдались большие ансамбли частиц, для описания которых обычно хватает классической теории. Чтобы обрисовать новые эффекты, предсказываемые квантовой механикой, физикам приходилось ставить мысленные эксперименты.

Лауреаты Премии перевели эти размышления в практическую плоскость, действуя разными способами: Серж Харош пробовал захватывать в ловушку электрически заряженные ионы, а Дэвид Вайнленд наблюдал за фотонами в резонаторе. На каждом из этих двух экспериментальных путей встречаются свои технологические сложности, но концептуально — с математической точки зрения — они близки друг к другу. Можно сказать, что двухуровневые системы (ионы или высоковозбуждённые ридберговские атомы) в обоих случаях взаимодействуют с квантованными модами, то есть находятся в ситуации, описываемой моделью Джейнса — Каммингса.

Лауреатами Нобелевской премии по физике стали специалисты по квантовой оптике

Ловушка с захваченными в неё ионами (иллюстрация Johan Jarnestad / The Royal Swedish Academy of Sciences).


Начало опытам с ионами положили исследования германских учёных Вольфганга Пауля и Ханса Георга Демельта, которые разработали первые технологии захвата частиц, отмеченные Нобелевской премией 1989 года. Сотрудничая с Демельтом, Дэвид Вайнленд ещё в 1975-м предложил удобный и эффективный способ лазерного охлаждения, названный доплеровским. Через шесть американец уже наблюдал отдельный ион Mg+ в ловушке Пеннинга, рабочую модель которой построил всё тот же Демельт.

Вообще говоря, ионные ловушки создаются в сверхвысоком вакууме с помощью статического и осциллирующего электрических полей. Захваченный ион сохраняет колебательное движение, которое квантуется при низкой температуре. Отсюда следует, что он может предложить два набора квантованных уровней: колебательные, характеризующие движение в ловушке, и электронные, отвечающие его внутреннему квантовому состоянию.

Экспериментаторам, естественно, хотелось бы «управлять» квантовым состоянием попавшегося в ловушку иона. К решению этой задачи физики шли постепенно, и на отдельных этапах пути, пройденных в девяностых годах, им также помогал Дэвид Вайнленд. Он, в частности, способствовал разработке методик лазерного охлаждения по боковой полосе частот и «перевода» квантовой суперпозиции электронных состояний на суперпозицию колебательных мод ловушки.

Лауреатами Нобелевской премии по физике стали специалисты по квантовой оптике

Схема охлаждения по боковой полосе частот.


Охлаждение по боковой полосе частот, поясним, позволяет переводить ион (чаще всего — предварительно охлаждённый доплеровским методом) в основное колебательное состояние по алгоритму, показанному выше в графическом виде. На рисунке буквой ν обозначены разные колебательные квантовые числа, а символами |↑> и |↓> — два электронных уровня. При охлаждении ион возбуждают лазерным излучением на частоте ω0 – ων, где ω0 — разность частот между электронными уровнями, а ων — частотный интервал, разделяющий колебательные моды ловушки. Поскольку возбуждённый ион «предпочитает» не менять число ν, его энергия постепенно уменьшается, и повторение процедуры приводит его в основное состояние с ν = 0.

Приём «переноса» суперпозиции, в свою очередь, легко охарактеризовать на примере иона, который уже находится и в низшем электронном состоянии |↓>, и в низшем состоянии ловушки |0>. Возбуждая его лазерным импульсом, можно создать суперпозицию состояний (α|↓> + β|↑>)|0>. После этого на захваченную частицу направляют излучение с частотой ω0 – ων, о которой мы говорили выше. Так как ион, согласно условию, находится в низшем колебательном состоянии, под влиянием оказывается только состояние |↑>|0>, переходящее в |↓>|1>. В результате мы получаем выражение вида α|↓>|0> + β|↓>|1>, которое преобразуется в |↓>(α|0> + β|1>); как видно, суперпозиция действительно была «передана» колебательной моде. Если в ловушке находится ещё один ион, разделяющий колебательные состояния первого, суперпозицию в дальнейшем можно «передать» внутренним состояниям второй частицы.

Лауреатами Нобелевской премии по физике стали специалисты по квантовой оптике

Схема типового эксперимента с фотонами в резонаторе и ридберговскими атомами (иллюстрация Johan Jarnestad / The Royal Swedish Academy of Sciences).


Исследования в области квантовой электродинамики резонатора, которыми занимается Серж Харош, стартовали в восьмидесятых годах прошлого века. Сначала физики пытались выяснить, как будут меняться свойства частицы, помещённой в оптический или микроволновой резонатор, и группе г-на Хароша удалось зарегистрировать эффект подавления её спонтанного излучения. В дальнейшем француз и его коллеги переключились на проблему усиления света в резонаторе, создав мазер, работающий на двухфотонном переходе между уровнями атома рубидия.

В экспериментах, проводимых Сержем Харошем, традиционно используется резонатор, образованный двумя сферическими зеркалами, разнесёнными на 2,7 см. Зеркала выполняются из сверхпроводящего материала (ниобия) и охлаждаются до температуры в ~0,8 К. Высочайшее качество их изготовления позволяет довести время жизни фотонов в резонаторе до ~130 мс — интервала, который соответствует пройденной дистанции в ~40 тысяч километров.

В резонатор физики направляют предварительно подготовленные ридберговские атомы рубидия, движущиеся со строго определённой скоростью. Чётко контролируемое взаимодействие атомов с полем даёт возможность создавать запутанные состояния и определять число фотонов, находящихся в резонаторе.

Стоит добавить, что упомянутые экспериментальные методы применяются не только в фундаментальных исследованиях, авторов которых интересуют, скажем, детали процесса распада суперпозиционных состояний. Опыты, проводимые в лаборатории г-на Вайнленда, подтверждают, что захваченные ионы могут служить и кубитами квантового компьютера, и элементами оптических часов, по точности «хода» опережающих современные цезиевые атомные часы.
6
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.